Search results for "Powder mixture"

showing 9 items of 9 documents

On-line tools for microscopic and macroscopic monitoring of microwave processing

2007

International audience; Direct monitoring of temperature, chemistry and microstructure is required to understand microwave heating in more detail, in order to fully exploit the unique features this non-equilibrium processing method can offer. In this paper, we show first that microwave radiometry can be used to follow volumetrically the thermal trajectory of microwave-heated aluminium powder. In-situ Raman spectroscopy is then shown to evidence thermal gradients between diamond and silicon grains in a binary powder mixture. Finally, perspectives and preliminary results of microstructural analysis obtained from X-ray microtomography are presented.

SiliconRadiometerschemistry.chemical_element02 engineering and technologyengineering.materialMicrowave radiation interactions with condensed matter[SPI]Engineering Sciences [physics]symbols.namesakeCondensed Matter::Materials ScienceOpticsAluminium0202 electrical engineering electronic engineering information engineeringRaman spectroscopy in condensed matterElectrical and Electronic EngineeringComputed tomographyPowder mixtureSynchrotron radiationbusiness.industryDiamond020206 networking & telecommunications[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructureElectronic Optical and Magnetic MaterialschemistryengineeringsymbolsAluminium powder0210 nano-technologybusinessRaman spectroscopyMicrowave
researchProduct

In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-tem…

1999

The mechanically activated self-propagating high-temperature synthesis (MASHS) technique was used to produce a NbAl3 intermetallic compound. This process results from the combination of two steps: a mechanical activation of the Nb 3Al powder mixture which is followed by a self-propagating high-temperature synthesis (SHS) reaction, induced by the exothermal character of the reaction Nb3Al. An original experiment was designed to study in-situ the formation of the NbAl3 phase in the combustion front: time-resolved X-ray diffraction coupled with an infrared imaging technique and a thermocouple measurement were performed to monitor the structural and thermal evolution during the SHS reaction. Ow…

Materials scienceMechanical EngineeringNiobiumIntermetallicAnalytical chemistrySelf-propagating high-temperature synthesischemistry.chemical_elementCondensed Matter PhysicsNanocrystalline materialCrystallographychemistryMechanics of MaterialsPhase (matter)X-ray crystallographyGeneral Materials ScienceAluminidePowder mixture
researchProduct

Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V6O11

2018

The Magneli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magneli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (μΩ m)-1, a Seebeck coefficient of α = -(3…

ChemistryAnalytical chemistryVanadiumchemistry.chemical_elementSpark plasma sintering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryThermal conductivityElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectPhysical and Theoretical Chemistry0210 nano-technologyPowder diffractionPowder mixtureInorganic Chemistry
researchProduct

Development of a Matrix-Matched Sphalerite Reference Material (MUL-ZnS-1) for Calibration of In Situ Trace Element Measurements by Laser Ablation-Ind…

2016

Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high-technology applications. In situ measurements of trace elements in natural sphalerite samples using LA-ICP-MS are hampered by a lack of homogenous matrix-matched sulfide reference materials available for calibration. The preparation of the MUL-ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single-element ICP-MS standard solutions a…

chemistry.chemical_classificationArgonLaser ablationMaterials scienceSulfide010401 analytical chemistryAnalytical chemistryTrace elementchemistry.chemical_elementGeologyElectron microprobeengineering.material010502 geochemistry & geophysics01 natural sciences0104 chemical sciencesSphaleritechemistryGeochemistry and PetrologyengineeringInductively coupled plasma mass spectrometryPowder mixture0105 earth and related environmental sciencesGeostandards and Geoanalytical Research
researchProduct

MoSi2 Formation Mechanisms during a Spark Plasma Synthesis from Mechanically Activated Powder Mixture

2010

Materials scienceSpark (mathematics)MetallurgyPlasmaMechanism (sociology)Powder mixture
researchProduct

Mechanical Activation as a New Method for SHS

2006

The use of mechanical activation (the elemental powder mixture is milled for a short time at given frequency and impact energy) as a precursor to self-propagating high-temperature synthesis (SHS) results in the formation of nanostructured porous materials. The mechanical activation step was found necessary (i) to modify the thermal parameters of the combustion front (i.e. combustion front velocity, thermal heating rate…) in the cases of Mo-Si, Fe-Al, Ni-Si (ii) to initiate a combustion front in the case of systems having a low exothermicity. Nevertheless, the control of the mechanically activated mixture characteristics and, the understanding of the mechanical activation role on the SHS par…

Materials scienceNanostructured materialsThermalMetallurgyImpact energyIntermetallicMicrostructurePorous mediumPowder mixtureCombustion frontAdvances in Science and Technology
researchProduct

Ti-Al Membranes for Microfiltration

2016

Porous membranes made of Ti – 48 at. % Al intermetallic compound was obtained by elemental powder synthesis. These disks can be used as microfiltration membranes due to their low pores size and interconnected porosity. During this study titanium (purity 99.5%) and aluminum (purity 99 %) with low particle size range were mixed in corresponding ratios. The powder mixture was pressed at 500 MPa and the samples were heat treated in two stages. In the first step is the forming of Al3Ti compound by a solid state reaction at a temperature of 640 °C, slightly below the melting point of aluminum. In the second step the Ti-Al compound was formed at the temperature of 1300 °C and the sintering the por…

Materials scienceScanning electron microscopeMetallurgyIntermetallicSinteringchemistry.chemical_elementCondensed Matter PhysicsAtomic and Molecular Physics and OpticsMembraneChemical engineeringchemistryMelting pointGeneral Materials ScienceParticle sizePowder mixtureTitaniumSolid State Phenomena
researchProduct

Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction

2002

Abstract The nanostructured NbAl3 intermetallic compound was synthesized using the mechanically-activated self-propagating high-temperature synthesis (MASHS) technique. This process results from the combination of two steps: a short duration ball-milling of a pure elemental Nb+3Al powder mixture followed by a self-propagating high-temperature synthesis (SHS) reaction induced by the Nb+3Al reaction exothermicity. Synchrotron time-resolved XRD coupled with a 2D infrared camera were used to investigate the structural and thermal evolutions during the SHS reaction, and to study in situ the mechanism of NbAl3 formation. The influence of the incoming heat flux and the mechanical activation effect…

Materials scienceInfraredMechanical EngineeringMetallurgyMetals and AlloysNucleationNiobiumIntermetallicchemistry.chemical_elementGeneral ChemistryCombustionSynchrotronlaw.inventionchemistryChemical engineeringMechanics of MaterialslawPhase (matter)Materials ChemistryPowder mixtureIntermetallics
researchProduct

Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system

2001

Abstract Nanostructured molybdenum disilicide (MoSi2) was synthesized using an alternative route called MASHS (mechanically activated self-propagating high-temperature synthesis). This original process combines a short duration ball milling (MA) with a self-sustaining combustion (SHS). These two steps were investigated. The microstructure evolution of the powder mixture during mechanical activation was monitored using XRD profile analysis and TEM investigations. Short duration ball milling of (Mo+2Si) powder produces Mo and Si nanocrystallites into micrometric particles. It was demonstrated that pure α-MoSi2 with nanometric structure (DMoSi2=88 nm) could be produced via a very fast combusti…

NanostructureMaterials scienceMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideCombustionMicrostructurechemistry.chemical_compoundChemical engineeringchemistryMechanics of MaterialsPowder metallurgyMaterials ChemistryProfile analysisBall millPowder mixtureJournal of Alloys and Compounds
researchProduct